Machine Learning I

Bjoern Andres

Machine Learning for Computer Vision TU Dresden

Contents

Supervised learning

- Deciding
 - Disjunctive normal forms
 - Binary decision trees
 - Linear functions
 - Artificial neural networks
- ► Semi-supervised and unsupervised learning
- ► Classifying
- ► Partitioning
- ► Clustering
- ► Ordering
- Supervised structured learning

Prerequisites

Mathematics

- ► Linear algebra (basics)
- Multivariate calculus (basics)
- Probability theory (basics)
- Computer Science
 - Algorithms and data structures (basics)
 - Theoretical computer science (basics of complexity theory)

Notation

- ► We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- For any set A and any m ∈ N, we denote by ^(A)_m the set of all m-elementary subsets of A, i.e. ^(A)_m = {B ∈ 2^A: |B| = m}.
- For any sets A, B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a, b) \in f$

• Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \, \middle| \, \forall j \in J \colon f(j) \in S_j \right\}$$
(1)

- We denote by $\langle \cdot, \cdot \rangle$ the standard inner product, and by $\| \cdot \|$ the l_2 -norm.
- For any $m \in \mathbb{N}$, we define $[m] = \{0, \dots, m-1\}$.