Machine Learning I

Bjoern Andres
Machine Learning for Computer Vision
TU Dresden

Contents

- Supervised learning
- Deciding
- Disjunctive normal forms
- Binary decision trees
- Linear functions
- Artificial neural networks
- Semi-supervised and unsupervised learning
- Classifying
- Partitioning
- Clustering
- Ordering
- Supervised structured learning

Prerequisites

- Mathematics
- Linear algebra (basics)
- Multivariate calculus (basics)
- Probability theory (basics)
- Computer Science
- Algorithms and data structures (basics)
- Theoretical computer science (basics of complexity theory)

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.
- For any sets A, B, we denote by B^{A} the set of all maps from A to B
- For any map $f \in B^{A}$, any $a \in A$ and any $b \in B$, we may write $b=f(a)$ or $b=f_{a}$ instead of $(a, b) \in f$
- Given any set J and, for any $j \in J$, a set S_{j}, we denote by $\prod_{j \in J} S_{j}$ the Cartesian product of the family $\left\{S_{j}\right\}_{j \in J}$, i.e.

$$
\begin{equation*}
\prod_{j \in J} S_{j}=\left\{f: J \rightarrow \bigcup_{j \in J} S_{j} \mid \forall j \in J: f(j) \in S_{j}\right\} \tag{1}
\end{equation*}
$$

- We denote by $\langle\cdot, \cdot\rangle$ the standard inner product, and by $\|\cdot\|$ the l_{2}-norm.
- For any $m \in \mathbb{N}$, we define $[m]=\{0, \ldots, m-1\}$.

