Machine Learning I

Bjoern Andres

Machine Learning for Computer Vision TU Dresden

Contents.

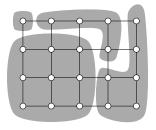
► This part of the course is about the problem of **decomposing** (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.

Contents.

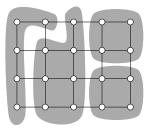
- ➤ This part of the course is about the problem of **decomposing** (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.
- ► This generalizes the problem of partitioning a set. It specializes to the latter for complete graphs.

Contents.

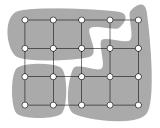
- ➤ This part of the course is about the problem of **decomposing** (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.
- ► This generalizes the problem of partitioning a set. It specializes to the latter for complete graphs.
- ► Analogously, the problem of decomposing a graph is introduced as an **unsupervised learning** problem w.r.t. **constrained data**.



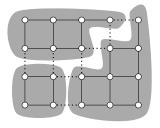
Decomposition of a graph ${\cal G}=({\cal V},{\cal E})$



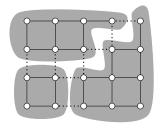
Decomposition of a graph ${\cal G}=({\cal V},{\cal E})$



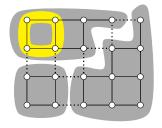
Decomposition of a graph ${\cal G}=({\cal V},{\cal E})$



Decomposition of a graph ${\cal G}=({\cal V},{\cal E})$



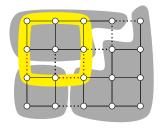
 $\hbox{Multicut of a graph } G=(V,E)$



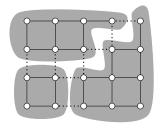
Multicut of a graph G = (V, E)



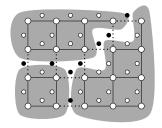
 ${\rm Multicut\ of\ a\ graph\ } G=(V,E)$



 $\hbox{Multicut of a graph } G=(V,E)$



 $\hbox{Multicut of a graph } G=(V,E)$



 ${\rm Multicut\ of\ a\ graph\ } G=(V,E)$

Let G=(A,E) be any graph.

Let G = (A, E) be any graph.

Definition.

▶ A subgraph G' = (A', E') of G is called a **component (cluster)** of G iff G' is non-empty, node-induced (i.e. $E' = E \cap \binom{A'}{2}$) and connected.

Let G = (A, E) be any graph.

Definition.

- ▶ A subgraph G' = (A', E') of G is called a **component (cluster)** of G iff G' is non-empty, node-induced (i.e. $E' = E \cap \binom{A'}{2}$) and connected.
- ▶ A partition Π of the node set A is called a **decomposition** (clustering) of G iff, for every $U \in \Pi$, the subgraph $(U, E \cap \binom{U}{2})$ of G induced by U is connected (and thus a component of G).

Let G = (A, E) be any graph.

Definition.

- ▶ A subgraph G' = (A', E') of G is called a **component (cluster)** of G iff G' is non-empty, node-induced (i.e. $E' = E \cap \binom{A'}{2}$) and connected.
- ▶ A partition Π of the node set A is called a **decomposition** (clustering) of G iff, for every $U \in \Pi$, the subgraph $(U, E \cap \binom{U}{2})$ of G induced by U is connected (and thus a component of G).
- ▶ We denote by D_G the set of all decompositions of G.

Definition.

▶ A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.

Definition.

- ▶ A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- \blacktriangleright We denote by M_G the set of all multicuts of G.

Definition.

- ▶ A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- ▶ We denote by M_G the set of all multicuts of G.

Lemma.

For any decomposition of a graph G, the set of those edges that straddle distinct components is a multicut of G. This multicut is said to be **induced** by the decomposition.

Definition.

- ▶ A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- ▶ We denote by M_G the set of all multicuts of G.

Lemma.

- For any decomposition of a graph G, the set of those edges that straddle distinct components is a multicut of G. This multicut is said to be **induced** by the decomposition.
- ▶ The map from decompositions to induced multicuts is a **bijection** from D_G to M_G .

Remarks:

▶ The characteristic function $y \colon E \to \{0,1\}$ of a multicut $y^{-1}(1)$ decides, for every edge $\{a,b\} = e \in E$, whether the incident nodes a and b belong to the same component $(y_e = 0)$ or distinct components $(y_e = 1)$.

Remarks:

- ▶ The characteristic function $y \colon E \to \{0,1\}$ of a multicut $y^{-1}(1)$ decides, for every edge $\{a,b\} = e \in E$, whether the incident nodes a and b belong to the same component $(y_e = 0)$ or distinct components $(y_e = 1)$.
- ▶ By the definition of a multicut, these decisions are not necessarily independent.

Remarks:

- ▶ The characteristic function $y \colon E \to \{0,1\}$ of a multicut $y^{-1}(1)$ decides, for every edge $\{a,b\} = e \in E$, whether the incident nodes a and b belong to the same component $(y_e = 0)$ or distinct components $(y_e = 1)$.
- ▶ By the definition of a multicut, these decisions are not necessarily independent.

Lemma. For any $y \colon E \to \{0,1\}$, the set $y^{-1}(1)$ of those edges that are mapped to 1 is a multicut of G iff the following inequalities are satisfied:

$$\forall C \in \mathsf{cycles}(G) \ \forall e \in C \colon \quad y_e \le \sum_{e' \in C \setminus \{e\}} y_{e'} \tag{1}$$

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem of learning and inferring decisions, by defining **constrained data** (S,X,x,Y) with

$$S = E (2)$$

$$\mathcal{Y} = \left\{ y : E \to \{0, 1\} \mid \forall C \in \mathsf{cycles}(G) \ \forall e \in C \colon \ y_e \leq \sum_{e' \in C \setminus \{e\}} y_{e'} \right\}$$
 (3)

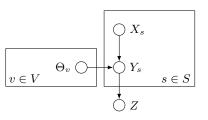
Familiy of functions

 \blacktriangleright We consider a finite, non-empty set V, called a set of attributes, and the attribute space $X=\mathbb{R}^V$

Familiy of functions

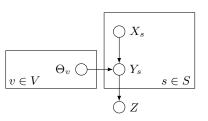
- lacktriangle We consider a finite, non-empty set V, called a set of **attributes**, and the **attribute space** $X=\mathbb{R}^V$
- We consider **linear functions**. Specifically, we consider $\Theta=\mathbb{R}^V$ and $f:\Theta\to\mathbb{R}^X$ such that

$$\forall \theta \in \Theta \ \forall \hat{x} \in \mathbb{R}^V : \quad f_{\theta}(\hat{x}) = \sum_{v \in V} \theta_v \, \hat{x}_v = \langle \theta, \hat{x} \rangle \ . \tag{4}$$



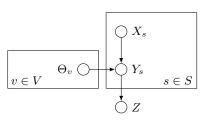
Random Variables

For any $\{a,b\}=s\in S=E$, let X_s be a random variable whose value is a vector $x_s\in\mathbb{R}^V$, the **attribute vector** of s.



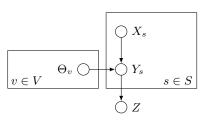
Random Variables

- For any $\{a,b\}=s\in S=E$, let X_s be a random variable whose value is a vector $x_s\in\mathbb{R}^V$, the **attribute vector** of s.
- For any $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0,1\}$, called the **decision** of joining $\{a,b\} = s$.



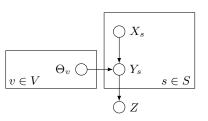
Random Variables

- For any $\{a,b\} = s \in S = E$, let X_s be a random variable whose value is a vector $x_s \in \mathbb{R}^V$, the **attribute vector** of s.
- For any $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0,1\}$, called the **decision** of joining $\{a,b\} = s$.
- For any $v \in V$, let Θ_v be a random variable whose value is a real number $\theta_v \in \mathbb{R}$, a **parameter** of the function we seek to learn.



Random Variables

- For any $\{a,b\} = s \in S = E$, let X_s be a random variable whose value is a vector $x_s \in \mathbb{R}^V$, the **attribute vector** of s.
- For any $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0,1\}$, called the **decision** of joining $\{a,b\} = s$.
- For any $v \in V$, let Θ_v be a random variable whose value is a real number $\theta_v \in \mathbb{R}$, a **parameter** of the function we seek to learn.
- ▶ Let Z be a random variable whose value is a subset $Z \subseteq \{0,1\}^S$ called the set of **feasible decisions**. For clustering, we are interested in $Z = \mathcal{Y}$, the set characterizing multicuts of G.



Factorization

$$P(X,Y,Z,\Theta) = P(Z \mid Y) \ \prod_{s \in S} P(Y_s \mid X_s,\Theta) \ \prod_{v \in V} P(\Theta_v) \ \prod_{s \in S} P(X_s)$$

Factorization

► Supervised learning:

$$P(\Theta \mid X, Y, Z)$$

Factorization

► Supervised learning:

$$\begin{split} P(\Theta \mid X, Y, Z) &= \frac{P(X, Y, Z, \Theta)}{P(X, Y, Z)} \\ &= \frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid X, Y) P(X, Y)} \\ &= \frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid Y) P(X, Y)} \\ &= \frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\ &\propto P(Y \mid X, \Theta) P(\Theta) \\ &= \prod_{s \in S} P(Y_s \mid X_s, \Theta) \prod_{v \in V} P(\Theta_v) \end{split}$$

Factorization

► Inference:

$$P(Y \mid X, Z, \theta)$$

Factorization

► Inference:

$$P(Y \mid X, Z, \theta) = \frac{P(X, Y, Z, \Theta)}{P(X, Z, \Theta)}$$

$$= \frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Z, \Theta)}$$

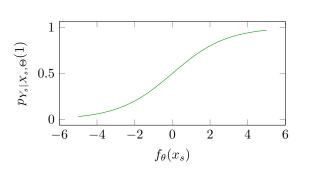
$$\propto P(Z \mid Y) P(Y \mid X, \Theta)$$

$$= P(Z \mid Y) \prod_{s \in S} P(Y_s \mid X_s, \Theta)$$

Distributions

▶ Logistic distribution

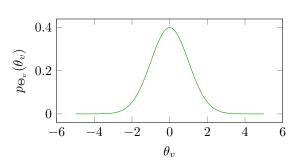
$$\forall s \in S: \qquad p_{Y_s|X_s,\Theta}(1) = \frac{1}{1 + 2^{-f_{\theta}(x_s)}}$$
 (5)



Distributions

▶ Normal distribution with $\sigma \in \mathbb{R}^+$:

$$\forall v \in V: \qquad p_{\Theta_v}(\theta_v) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\theta_v^2/2\sigma^2} \tag{6}$$



Distributions

► Uniform distribution on a subset

$$\forall \mathcal{Z} \subseteq \{0,1\}^S \ \forall y \in \{0,1\}^S \quad p_{Z|Y}(\mathcal{Z},y) \propto \begin{cases} 1 & \text{if } y \in \mathcal{Z} \\ 0 & \text{otherwise} \end{cases}$$

Note that $p_{Z|Y}(\mathcal{Y},y)$ is non-zero iff the labeling $y\colon S\to\{0,1\}$ defines an multicut of G.

Lemma. Estimating maximally probable parameters θ , given attributes x and decisions y, i.e.,

$$\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta|X,Y,Z}(\theta,x,y,\mathcal{Y})$$

is an l_2 -regularized logistic regression problem.

Lemma. Estimating maximally probable parameters θ , given attributes x and decisions y, i.e.,

$$\underset{\theta \in \mathbb{R}^V}{\operatorname{argmax}} \quad p_{\Theta|X,Y,Z}(\theta, x, y, \mathcal{Y})$$

is an l_2 -regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

$$\begin{aligned} & \underset{\theta \in \mathbb{R}^V}{\operatorname{argmax}} & p_{\Theta|X,Y,Z}(\theta,x,y,\mathcal{Y}) \\ & = \underset{\theta \in \mathbb{R}^V}{\operatorname{argmin}} & \sum_{s \in S} \left(-y_s \, f_{\theta}(x_s) + \log\left(1 + 2^{f_{\theta}(x_s)}\right) \right) + \frac{\log e}{2\sigma^2} \|\theta\|_2^2 \ . \end{aligned}$$

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y} , and given parameters θ , i.e.,

$$\underset{y \in \{0,1\}^S}{\operatorname{argmax}} \quad p_{Y|X,Z,\Theta}(y,x,\mathcal{Y},\theta) \tag{7}$$

assumes the form of the minimum cost multicut problem:

$$\underset{y \colon E \to \{0,1\}}{\operatorname{argmin}} \quad \sum_{e \in E} (-\langle \theta, x_e \rangle) \, y_e \tag{8}$$

subject to
$$\forall C \in \operatorname{cycles}(G) \ \forall e \in C \colon \quad y_e \leq \sum_{e' \in C \setminus \{e\}} y_{e'}$$
 (9)

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y} , and given parameters θ , i.e.,

$$\underset{y \in \{0,1\}^S}{\operatorname{argmax}} \quad p_{Y|X,Z,\Theta}(y,x,\mathcal{Y},\theta) \tag{7}$$

assumes the form of the minimum cost multicut problem:

$$\underset{y \colon E \to \{0,1\}}{\operatorname{argmin}} \quad \sum_{e \in E} (-\langle \theta, x_e \rangle) \, y_e \tag{8}$$

subject to
$$\forall C \in \operatorname{cycles}(G) \ \forall e \in C \colon \quad y_e \leq \sum_{e' \in C \setminus \{e\}} y_{e'}$$
 (9)

Theorem. The minimum cost multicut problem is NP-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose NP-hardness is an important result Dahlhaus et al. (1994).

We will generalize the three **local search algorithms** we have defined for the set partition problem to the minimum cost multicut problem.

We will generalize the three **local search algorithms** we have defined for the set partition problem to the minimum cost multicut problem.

For simplicity, we define $c:E\to\mathbb{R}$ such that

$$\forall e \in S \colon \quad c_e = -\langle \theta, x_e \rangle \tag{10}$$

and write the (linear) cost function $\varphi: \{0,1\}^E \to \mathbb{R}$ such that

$$\forall y \in \{0,1\}^E \colon \quad \varphi(y) = \sum_{e \in E} c_e \, y_e \tag{11}$$

Greedy joining algorithm:

► The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.

Greedy joining algorithm:

- ► The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.
- ► It searches for decompositions with lower cost by joining pairs of **neighboring (!)** components recursively.

Greedy joining algorithm:

- ► The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.
- ► It searches for decompositions with lower cost by joining pairs of **neighboring (!)** components recursively.
- As components can only grow and the number of components decreases by one in every step, one typically starts from the finest decomposition Π_0 of A into one-elementary components.

Definition. Let G = (A, E) be any graph.

Definition. Let G = (A, E) be any graph.

▶ For any disjoint sets $B, C \subseteq A$, the pair $\{B, C\}$ is called **neighboring** in G iff there exist nodes $b \in B$ and $c \in C$ such that $\{b, c\} \in E$.

Definition. Let G = (A, E) be any graph.

- ▶ For any disjoint sets $B, C \subseteq A$, the pair $\{B, C\}$ is called **neighboring** in G iff there exist nodes $b \in B$ and $c \in C$ such that $\{b, c\} \in E$.
- lacktriangle For any decomposition Π of a graph G=(A,E), we define

$$\mathcal{E}_{\Pi} = \left\{ \{B, C\} \in \binom{\Pi}{2} \middle| \exists b \in B \,\exists c \in C \colon \{b, c\} \in E \right\} . \tag{12}$$

Definition. Let G = (A, E) be any graph.

- ▶ For any disjoint sets $B, C \subseteq A$, the pair $\{B, C\}$ is called **neighboring** in G iff there exist nodes $b \in B$ and $c \in C$ such that $\{b, c\} \in E$.
- lacktriangle For any decomposition Π of a graph G=(A,E), we define

$$\mathcal{E}_{\Pi} = \left\{ \{B, C\} \in \binom{\Pi}{2} \middle| \exists b \in B \,\exists c \in C \colon \{b, c\} \in E \right\} . \tag{12}$$

For any decomposition Π of G=(A,E) and any $\{B,C\}\in\mathcal{E}_{\Pi}$, let $\mathrm{join}_{BC}[\Pi]$ be the decomposition of G obtained by joining the sets B and C in Π , i.e.

$$\mathsf{join}_{BC}[\Pi] = (\Pi \setminus \{B, C\}) \cup \{B \cup C\} \ . \tag{13}$$

```
\begin{split} &\Pi' = \mathsf{greedy\text{-}joining}(\Pi) \\ &\mathsf{choose}\ \{B,C\} \in \underset{\{B',C'\} \in \mathcal{E}_\Pi}{\operatorname{argmin}}\ \varphi(y^{\mathsf{join}_{B'C'}[\Pi]}) - \varphi(y^\Pi) \\ &\mathsf{if}\ \varphi(y^{\mathsf{join}_{BC}[\Pi]}) - \varphi(y^\Pi) < 0 \\ &\Pi' := \mathsf{greedy\text{-}joining}(\mathsf{join}_{BC}[\Pi]) \\ &\mathsf{else} \\ &\Pi' := \Pi \end{split}
```

Greedy moving algorithm:

► The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.

Greedy moving algorithm:

- ► The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.
- ► It searches for decompositions with lower cost by recursively moving individual nodes from one component to a **neighboring!** component, possibly a new one.

Greedy moving algorithm:

- ► The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.
- ► It searches for decompositions with lower cost by recursively moving individual nodes from one component to a **neighboring!** component, possibly a new one.
- ▶ When a **cut node** is moved out of a component or a node is moved to a new component, the number of components increases. When the last element is moved out of a component, the number of components decreases.

Definition. For any graph G=(A,E) and any decomposition Π of G, the decomposition Π is called **coarsest** iff, for every $U\in\Pi$, the component $(U,E\cap\binom{U}{2})$ induced by U is maximal.

Definition. For any graph G=(A,E) and any decomposition Π of G, the decomposition Π is called **coarsest** iff, for every $U\in\Pi$, the component $(U,E\cap\binom{U}{2})$ induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it by Π_G^* .

Definition. For any graph G=(A,E) and any decomposition Π of G, the decomposition Π is called **coarsest** iff, for every $U\in\Pi$, the component $(U,E\cap\binom{U}{2})$ induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it by Π_G^* .

Definition. For any graph G=(A,E), any decomposition Π of A and any $a\in A$, choose U_a to be the unique $U_a\in \Pi$ such that $a\in U_a$, and let

$$\mathcal{N}_a = \{\emptyset\} \cup \{W \in \Pi \mid a \notin W \land \exists w \in W \colon \{a, w\} \in E\}$$
 (14)

$$G_a = \left(U_a \setminus \{a\}, E \cap \binom{U_a \setminus \{a\}}{2}\right) \tag{15}$$

For any $U\in\mathcal{N}_a$, let $\mathsf{move}_{aU}[\Pi]$ the decomposition of A obtained by moving the node a to the set U, i.e.

$$\mathsf{move}_{aU}[\Pi] = \Pi \setminus \{U_a, U\} \cup \{U \cup \{a\}\} \cup \Pi_{G_a}^* . \tag{16}$$

```
\begin{split} &\Pi' = \mathsf{greedy\text{-}moving}(\Pi) \\ &\operatorname{choose}\ (a, U) \in \underset{a' \in A,\ U' \in \mathcal{N}_{a'}}{\operatorname{argmin}} \ \varphi(y^{\mathsf{move}_{a'U'}[\Pi]}) - \varphi(y^\Pi) \\ &\operatorname{if}\ \varphi(y^{\mathsf{move}_{aU}[\Pi]}) - \varphi(y^\Pi) < 0 \\ &\Pi' := \mathsf{greedy\text{-}moving}(\mathsf{move}_{aU}[\Pi]) \\ &\operatorname{else} \\ &\Pi' := \Pi \end{split}
```

$$\begin{split} \Pi' &= \mathsf{greedy\text{-}moving}(\Pi) \\ &\mathsf{choose}\ (a, U) \in \underset{a' \in A,\ U' \in \mathcal{N}_{a'}}{\operatorname{argmin}} \ \varphi(y^{\mathsf{move}_{a'U'}[\Pi]}) - \varphi(y^\Pi) \\ &\mathsf{if}\ \varphi(y^{\mathsf{move}_{aU}[\Pi]}) - \varphi(y^\Pi) < 0 \\ &\Pi' := \mathsf{greedy\text{-}moving}(\mathsf{move}_{aU}[\Pi]) \\ &\mathsf{else} \\ &\Pi' := \Pi \end{split}$$

A generalization of this algorithm by means of the technique of Kernighan and Lin (1970) is analogous to the greedy moving algorithm for the set partition problem.

Summary.

► Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph

Summary.

- ► Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- ▶ The supervised learning problem can assume the form of l_2 -regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components

Summary.

- ► Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- ▶ The supervised learning problem can assume the form of l_2 -regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components
- ► The inference problem assumes the form of the NP-hard minimum cost multicut problem

Summary.

- ► Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- ightharpoonup The supervised learning problem can assume the form of l_2 -regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components
- ► The inference problem assumes the form of the NP-hard minimum cost multicut problem
- ► Local search algorithms for tackling this problem are greedy joining, greedy moving, and greedy moving using the technique of Kernighan and Lin.