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Ordering

Contents.

I This part of the course is about the problem of learning to order a
finite set.

I This problem is introduced as an unsupervised learning problem
w.r.t. constrained data.
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We consider any finite, non-empty set A that we seek to order.

Definition. A strict order on A is a binary relation < ⊆ A×A that
satisfies the following conditions:

∀a ∈ A : ¬a < a (1)

∀{a, b} ∈
(
A
2

)
: a < b xor b < a (2)

∀{a, b, c} ∈
(
A
3

)
: a < b ∧ b < c ⇒ a < c (3)
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Lemma. The strict orders on A are characterized by the bijections
α : {0, . . . , |A| − 1} → A. For any such bijection, consider the order <α
such that

∀a, b ∈ A : a < b ⇔ α−1(a) < α−1(b) . (4)

Lemma. The strict orders on A are characterized by those

y : {(a, b) ∈ A×A | a 6= b} → {0, 1} (5)

that satisfy the following conditions:

∀a ∈ A ∀b ∈ A \ {a} : yab + yba = 1 (6)

∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} : yab + ybc − 1 ≤ yac (7)
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Constrained Data

We reduce the problem of learning and inferring orders to the problem of
learning and inferring decisions, by defining constrained data (S,X, x, Y )
with

S = {(a, b) ∈ A×A | a 6= b} (8)

Y =
{
y ∈ {0, 1}S

∣∣∣ ∀a ∈ A ∀b ∈ A \ {a} : yab + yba = 1

∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

yab + ybc − 1 ≤ yac
}

(9)
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Familiy of functions

I We consider a finite, non-empty set V , called a set of attributes,
and the attribute space X = RV

I We consider linear functions. Specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) =
∑
v∈V

θv x̂v = 〈θ, x̂〉 . (10)
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Xs

Ys

Z

Θv

v ∈ V s ∈ S

Random Variables

I For any (a, b) = s ∈ S = E, let Xs be a random variable whose value
is a vector xs ∈ RV , the attribute vector of s.

I For any (a, b) = s ∈ S, let Ys be a random variable whose value is a
binary number ys ∈ {0, 1}, called the decision placing a before b.

I For any v ∈ V , let Θv be a random variable whose value is a real
number θv ∈ R, a parameter of the function we seek to learn.

I Let Z be a random variable whose value is a subset Z ⊆ {0, 1}S
called the set of feasible decisions. For ordering, we are interested
in Z = Y, the set of characteristic functions of strict orders on A.
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Xs

Ys

Z

Θv

v ∈ V s ∈ S

Factorization

P (X,Y, Z,Θ) = P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)
∏
s∈S

P (Xs)
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Factorization

I Supervised learning:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)
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Factorization

I Inference:

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ)
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Distributions

I Logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(11)
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fθ(xs)
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s
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s
,Θ

(1
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Distributions

I Normal distribution with σ ∈ R+:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(12)
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Distributions

I Uniform distribution on a subset

∀Z ⊆ {0, 1}S ∀y ∈ {0, 1}S pZ|Y (Z, y) ∝

{
1 if y ∈ Z
0 otherwise

Note that pZ|Y (Y, y) is non-zero iff the labeling y : S → {0, 1}
defines an order on A.
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Lemma. Estimating maximally probable parameters θ, given attributes x
and decisions y, i.e.,

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

is an l2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

= argmin
θ∈RV

∑
s∈S

(
−ys fθ(xs) + log

(
1 + 2fθ(xs)

))
+

log e

2σ2
‖θ‖22 .
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Lemma. Estimating maximally probable decisions y, given attributes x,
given the set of feasible decisions Y, and given parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Z,Θ(y, x,Y, θ) (13)

assumes the form of the linear ordering problem:

argmin
y : S→{0,1}

∑
s∈S

(−〈θ, xs〉) ys (14)

subject to ∀a ∈ A ∀b ∈ A \ {a} : yab + yba = 1 (15)

∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

yab + ybc − 1 ≤ yac (16)

Theorem. The linear ordering problem is np-hard.

The linear ordering problem has been studied intensively. A comprehensive
survey is by Mart́ı and Reinelt (2011). Pioneering research is by Grötschel
(1984).
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We define two local search algorithms for the linear ordering problem.

For simplicity, we define c : S → R such that

∀s ∈ S : cs = −〈θ, xs〉 (17)

and write the (linear) cost function ϕ : {0, 1}S → R such that

∀y ∈ {0, 1}S : ϕ(y) =
∑
s∈S

cs ys (18)
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Greedy transposition algorithm:

I The greedy transposition algorithm starts from any initial strict order.

I It searches for strict orders with lower objective value by swapping
pairs of elements

Definition. For any bijection α : {0, . . . , |A| − 1} → A and any
j, k ∈ {0, . . . , |A| − 1}, let transposejk[α] the bijection obtained from α
by swapping αj and αk, i.e.

∀l ∈ {0, . . . , |A| − 1} : transposejk[α](l) =


αk if l = j

αj if l = k

αl otherwise

. (19)
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α′ = greedy-transposition(α)

choose (j, k) ∈ argmin
0≤j′<k′<|A|

ϕ(ytransposej′k′ [α])− ϕ(yα)

if ϕ(ytransposejk[α])− ϕ(yα) < 0
α′ := greedy-transposition(transposejk[α])

else
α′ := α
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Greedy transposition using the technique of Kernighan and Lin
(1970)

α′ = greedy-transposition-kl(α)

α0 := α
δ0 := 0
J0 := {0, . . . , |A| − 1}
t := 0
repeat (build sequence of swaps)

choose (j, k) ∈ argmin
{(j′,k′)∈J2

t |j′<k′}
ϕ(y

transpose
j′k′ [α

t]
)− ϕ(yα

t
)

αt+1 := transposejk[αt]

δt+1 := ϕ(yα
t+1

)− ϕ(yα
t
) < 0

Jt+1 := Jt \ {j, k} (move αj and αk only once)
t := t+ 1

until |Jt| < 2

t̂ := min argmin
t′∈{0,...,|A|}

t′∑
τ=0

δτ (choose sub-sequence)

if
t̂∑

τ=0
δτ < 0

α′ := greedy-transposition-kl(αt̂) (recurse)
else

α′ := α (terminate)



20/20

Ordering

Summary.

I Learning and inferring orders on a finite set A is an unsupervised
learning problem w.r.t. constrained data whose feasible labelings
characterize the strict orders on A.

I The supervised learning problem can assume the form of
l2-regularized logistic regression where samples are pairs (a, b) ∈ A2

such that a 6= b and decisions indicate whether a < b.

I The inference problem assumes the form of the np-hard linear
ordering problem

I Local search algorithms for tackling this problem are greedy
transposition and greedy transposition using the technique of
Kernighan and Lin.


