Machine Learning I

Bjoern Andres

Machine Learning for Computer Vision TU Dresden

Contents. This part of the course is about supervised structured learning of conditional graphical models.

Definition. For any factor graph G = (S, F, E), a function $H : \{0, 1\}^S \to \mathbb{R}$ is said to **factorize** w.r.t. G iff, for every $f \in F$, there exists a function a function $h_f : \{0, 1\}^{S_f} \to \mathbb{R}$, called a **factor** of H, such that

$$\forall y \in \{0,1\}^S$$
: $H(y) = \sum_{f \in F} h_f(y_{S_f})$. (1)

Example: A function $H: \{0,1\}^S \to \mathbb{R}$ factorizes w.r.t. the factor graph

iff there exist suitable functions $h_0, h_{01}, h_1, h_{12}, h_2$ such that, for any $y \in \{0, 1\}^S$: $H(y) = h_0(y_{\bar{0}}) + h_1(y_{\bar{1}}) + h_2(y_{\bar{2}}) + h_{01}(y_{\bar{0}}, y_{\bar{1}}) + h_{12}(y_{\bar{1}}, y_{\bar{2}})$.

Definition. A tuple $(S, F, E, \{X_f\}_{f \in F}, \Theta, \{h_f\}_{f \in F})$ is called a **conditional graphical model** with attribute space $X := \prod_{f \in F} X_f$ and parameter space Θ iff the following conditions hold:

- (S, F, E) is a factor graph
- $\blacktriangleright \ \Theta \neq \emptyset$
- For every $f \in F$:
 - X_f is non-empty, called the **attribute space** of f
 - $h_f: \Theta \to \mathbb{R}^{X_f \times \{0,1\}^{S_f}}$, called a factor.

The family $H: \Theta \rightarrow \mathbb{R}^{X \times \{0,1\}^S}$ such that

$$\forall \theta \in \Theta \ \forall x \in X \ \forall y \in \{0,1\}^S \colon \quad H_\theta(x,y) = \sum_{f \in F} h_{f\theta}(x_f, y_{S_f})$$
(2)

is called the family of **energy functions** of the conditional graphical model.

Family of Functions

- ► We consider a conditional graphical model (S, F, E, {X_f}_{f∈F}, Θ, {h_f}_{f∈F}) and its family H of energy functions.
- We assume that Θ is a finite-dimensional, real vector space, i.e., there exists a finite, non-empty set J and Θ = ℝ^J.
- We assume that every function h_f is linear in Θ , i.e., for every $f \in F$, there exists a $\varphi_f : X_f \times \{0,1\}^{S_f} \to \mathbb{R}^J$ such that for any $x_f \in X_f$, any $y_{S_f} \in \{0,1\}^{S_f}$ and any $\theta \in \Theta$:

$$h_{f\theta}(x_f, y_{S_f}) = \langle \theta, \varphi_f(x_f, y_{S_f}) \rangle$$
(3)

For convenience, we define $\xi:X\times\{0,1\}^S\to\mathbb{R}^J$ such that for any $x\in X$ and any $y\in\{0,1\}^S$:

$$\xi(x,y) = \sum_{f \in F} \varphi_f(x_f, y_{S_f}) \tag{4}$$

Thus, we obtain for any $\theta \in \Theta$, any $x \in X$ and any $y \in Y$:

$$H_{\theta}(x,y) = \sum_{f \in F} h_{f\theta}(x_f, y_{S_f})$$

=
$$\sum_{f \in F} \langle \theta, \varphi_f(x_f, y_{S_f}) \rangle$$

=
$$\left\langle \theta, \sum_{f \in F} \varphi_f(x_f, y_{S_f}) \right\rangle$$

=
$$\langle \theta, \xi(x, y) \rangle$$
 (5)

Probabilistic Model

- Let \mathcal{X} be a random variable whose value is an element $x \in X$ of the attribute space.
- \blacktriangleright Let $\mathcal Y$ be a random variable whose value is a combination of decisions $y \in \{0,1\}^S$
- ▶ For any $j \in J$, let Θ_j a random variable whose value is a parameter $\theta_j \in \mathbb{R}$

Factorization

► We assume:

$$P(\mathcal{X}, \mathcal{Y}, \Theta) = P(\mathcal{Y} \mid \mathcal{X}, \Theta) P(\mathcal{X}) \prod_{j \in J} P(\Theta_j)$$
(6)

► Thus:

$$P(\Theta \mid \mathcal{X}, \mathcal{Y}) = \frac{P(\mathcal{X}, \mathcal{Y}, \Theta)}{P(\mathcal{X}, \mathcal{Y})}$$
$$= \frac{P(\mathcal{Y} \mid \mathcal{X}, \Theta) P(\mathcal{X}) \prod_{j \in J} P(\Theta_j)}{P(\mathcal{X}, \mathcal{Y})}$$
$$\propto P(\mathcal{Y} \mid \mathcal{X}, \Theta) \prod_{j \in J} P(\Theta_j)$$
(7)

Distributions

Definition. For any conditional graphical model, the **partition function** $Z: X \times \Theta \to \mathbb{R}$ and **Gibbs distribution** $p: X \times \{0,1\}^S \times \Theta \to [0,1]$ are defined by the forms

$$Z(x,\theta) = \sum_{y \in \{0,1\}^S} e^{-H_{\theta}(x,y)}$$
(8)

$$p(y, x, \theta) = \frac{1}{Z(x, \theta)} e^{-H_{\theta}(x, y)}$$
(9)

We consider a $\sigma \in \mathbb{R}^+$ and

$$p_{\mathcal{Y}|\mathcal{X},\Theta}(y,x,\theta) = \frac{1}{Z(x,\theta)} e^{-H_{\theta}(x,y)}$$
(10)

$$\forall j \in J: \qquad p_{\Theta_j}(\theta_j) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\theta_j^2/2\sigma^2} . \tag{11}$$

Lemma. Estimating maximally probable parameters θ , given attributes x and decisions y, i.e.,

$$\underset{\theta \in \mathbb{R}^J}{\operatorname{argmax}} \quad p_{\Theta | \mathcal{X}, \mathcal{Y}}(\theta, x, y)$$

is identical to the supervised structured learning problem w.r.t. $L,\,R$ and λ such that

$$L(H_{\theta}(x,\cdot),y) = H_{\theta}(x,y) + \ln Z(x,\theta)$$
(12)

$$= H_{\theta}(x, y) + \ln \sum_{y' \in \{0,1\}^S} e^{-H_{\theta}(x, y')}$$
(13)

$$= \langle \theta, \xi(x,y) \rangle + \ln \sum_{y' \in \{0,1\}^S} e^{-\langle \theta, \xi(x,y') \rangle}$$
(14)

$$R(\theta) = \|\theta\|_2^2 \tag{15}$$

$$\lambda = \frac{1}{2\sigma^2} \tag{16}$$

Lemma: The first and second partial derivatives of the logarithm of the partition function have the forms

$$\frac{\partial}{\partial \theta_j} \ln Z = \frac{1}{Z(x,\theta)} \sum_{\substack{y' \in \{0,1\}^S \\ y' \sim p_{\mathcal{Y}|\mathcal{X},\Theta}}} (-\xi_j(x,y')) e^{-\langle \theta, \xi(x,y') \rangle}$$
(17)
= $\mathbb{E}_{y' \sim p_{\mathcal{Y}|\mathcal{X},\Theta}} (-\xi_j(x,y'))$ (18)

$$\frac{\partial^2}{\partial \theta_j \,\partial \theta_k} \ln Z = \mathbb{E}_{y' \sim p_{\mathcal{Y}|\mathcal{X},\Theta}}(\xi_j(x,y')\xi_k(x,y')) \\ - \mathbb{E}_{y' \sim p_{\mathcal{Y}|\mathcal{X},\Theta}}(\xi_j(x,y'))\mathbb{E}_{y' \sim p_{\mathcal{Y}|\mathcal{X},\Theta}}(\xi_k(x,y')) \\ = \mathsf{COV}_{y' \sim p_{\mathcal{Y}|\mathcal{X},\Theta}}(\xi_j(x,y'),\xi_k(x,y'))$$
(19)

Lemma: Supervised structured learning of a conditional graphical model is a convex optimization problem.

Lemma: Estimating maximally probable decisions y, given attributes x and parameters θ , i.e.

$$\underset{y \in \{0,1\}^S}{\operatorname{argmax}} \quad p_{\mathcal{Y}|\mathcal{X},\Theta}(x,y,\theta) \tag{20}$$

is identical to the structured inference problem with $\hat{H}(x,y) = H_{\theta}(x,y)$.

Summary. Supervised structured learning of conditional graphical models whose factors are linear functions is a convex optimization problem.