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Conditional Graphical Models Ill

Contents. This part of the course introduces algorithms for supervised
structured inference with conditional graphical models.
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The inference problem w.r.t. a conditional graphical model has the
form of an unconstrained binary optimization problem:

argmin Hy(z,y) (1)
y€{0,1}%

It is NP-hard. (This can be shown, e.g., by reduction of binary integer
programming, which is one of Karp's 21 problems).
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We consider transformations that change one decision at a time:

Definition. For any s € S, let flip,: {0,1}% — {0,1}“ such that for any
y€{0,1}% and any t € S:

flip, [y](t) = {1 T W= (2)

Yt otherwise

The greedy local search algorithm w.r.t these transformations is known as
Iterated Conditional Modes, or ICM (Besag 1986).

y' =icm(y)

choose s € argmin Hy(z, flip, [y]) — Ho(x,y)
s'esS
if He(l’» ﬂlps[y]) < H9($7 y)
y' = iem(flip,[y])
else
y =y
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» The inference problem consists in computing the minimum of a
sum of functions:

argmin Hy(z,y)
ye{0,1}9

= argmin Z hyo(zs,ys(r)) (3)
ye{0,1}5 +cp

» This problem is analogous to that of computing the sum of a product
of functions (from the previous lecture) in that both (R, min, +) and
(R,+,-) are commutative semi-rings.

» This analogy is sufficient to transfer the idea of message passing,
albeit with messages adapted to the (R, min, +) semi-ring:
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Definition. (Kschischang 2001) For any variable node s € S and any
factor node f € F, the functions

Hs—frHf—s: {0,1} - R, (4)
called messages, are defined such that for all y, € {0,1}:
ts—f(Ys) = Z pp—s(ys)  (5)
frer(\{f}

pp—s(ys) = min Prozr, ysn) + > nesslys)  (6)
R Ses(f\(s}
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Lemma. If the factor graph is acyclic, messages are defined recursively by
(5) and (6), beginning with the messages from leaves. Moreover, for any
ses:

argmin Hy(z,y)

ye{0,1}5

= min the(iﬂf,yS(f))
ye{0,1}5 fer

=, min D ps(ys) (7)
YR prer(s)

Proof. Analogous to that of Lemma 18 in the lecture notes.
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Summary

» For conditional graphical models whose factor graph is acylic, the
inference problem can be solved efficiently by means of min-sum
message passing.

» For conditional graphical models whose factor graph is cyclic, one

local search algorithm for the inference problem is known as Iterated
Conditional Modes (ICM).
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