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Conditional Graphical Models III

Contents. This part of the course introduces algorithms for supervised
structured inference with conditional graphical models.
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Conditional Graphical Models III

The inference problem w.r.t. a conditional graphical model has the
form of an unconstrained binary optimization problem:

argmin
y∈{0,1}S

Hθ(x, y) (1)

It is NP-hard. (This can be shown, e.g., by reduction of binary integer
programming, which is one of Karp’s 21 problems).
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We consider transformations that change one decision at a time:

Definition. For any s ∈ S, let flips : {0, 1}S → {0, 1}S such that for any
y ∈ {0, 1}S and any t ∈ S:

flips[y](t) =

{
1− yt if t = s

yt otherwise
. (2)

The greedy local search algorithm w.r.t these transformations is known as
Iterated Conditional Modes, or ICM (Besag 1986).

y′ = icm(y)

choose s ∈ argmin
s′∈S

Hθ(x, flips′ [y])−Hθ(x, y)

if Hθ(x, flips[y]) < Hθ(x, y)
y′ := icm(flips[y])

else
y′ := y
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I The inference problem consists in computing the minimum of a
sum of functions:

argmin
y∈{0,1}S

Hθ(x, y)

= argmin
y∈{0,1}S

∑
f∈F

hfθ(xf , yS(f)) (3)

I This problem is analogous to that of computing the sum of a product
of functions (from the previous lecture) in that both (R,min,+) and
(R,+, ·) are commutative semi-rings.

I This analogy is sufficient to transfer the idea of message passing,
albeit with messages adapted to the (R,min,+) semi-ring:
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Definition. (Kschischang 2001) For any variable node s ∈ S and any
factor node f ∈ F , the functions

µs→f , µf→s : {0, 1} → R , (4)

called messages, are defined such that for all ys ∈ {0, 1}:

µs→f (ys) =
∑

f ′∈F (s)\{f}

µf ′→s(ys) (5)

µf→s(ys) = min
yS(f)\{s}

ψfθ(xf , yS(f)) +
∑

s′∈S(f)\{s}

µs′→f (ys′) (6)
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Lemma. If the factor graph is acyclic, messages are defined recursively by
(5) and (6), beginning with the messages from leaves. Moreover, for any
s ∈ S:

argmin
y∈{0,1}S

Hθ(x, y)

= min
y∈{0,1}S

∑
f∈F

hfθ(xf , yS(f))

= min
ys∈{0,1}

∑
f ′∈F (s)

µf ′→s(ys) (7)

Proof. Analogous to that of Lemma 18 in the lecture notes.
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Summary

I For conditional graphical models whose factor graph is acylic, the
inference problem can be solved efficiently by means of min-sum
message passing.

I For conditional graphical models whose factor graph is cyclic, one
local search algorithm for the inference problem is known as Iterated
Conditional Modes (ICM).


