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Clustering for Image Decomposition

Contents:

I This part of the course is about an application of clustering to the
task of image decomposition.

I No additional definitions or algorithms are introduced in this lecture.
Instead, this lecture illustrates the definitions and algorithms
introduced in the previous lecture on clustering.
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Clustering for Image Decomposition

Volume Image (32 nm/voxel) Decomposition
(Denk and Horstmann, 2004) (Andres et al., 2012)

7→

The volume image taken by a Block Face Scanning Electron Microscope
shows cells that are indistinguishable by appearance. Decomposing such an
image into individual cells is one challenge toward the ambitious goal of
mapping the connectivity of nervous systems.
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Decomposition of a graph G = (V,E)

I A mathematical abstraction of a decomposition of an image is a
decomposition of the pixel grid graph.

I A decomposition of a graph is a partition of the node set into
connected subsets (one example is depicted above in gray).
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Decomposition of a graph G = (V,E)

I A decomposition of a graph is characterized by the set of edges that
straddle distinct components (depicted above as dotted lines)

I Those subsets of edges are called multicuts of the graph
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Multicut of a graph G = (V,E)

I The defining property of multicuts is that no cycle in the graph
intersects with the multicut in precisely one edge
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Multicut of a graph G = (V,E)

multicuts(G) := {M ⊆ E | ∀C ∈ cycles(G) : |M ∩ C| 6= 1}
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Multicut of a graph G = (V,E)

I The characteristic function y : E → {0, 1} of a multicut y−1(1) can
be used to encode the decomposition induced by the multicut in an
|E|-dimensional 01-vector

I For any e ∈ E, ye = 1 indicates that an edge is cut, straddling
distinct components
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Multicut of a graph G = (V,E)

I The set of the characteristic functions of all multicuts of G:

YG :=

y : E → {0, 1}

∣∣∣∣∣∣ ∀C ∈ cycles(G)∀e ∈ C : ye ≤
∑

f∈C\{e}

yf
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Graph G = (V,E)

I An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or
negative) cost ce ∈ R that is payed iff the incident pixels v and w are
put in distinct components

I Such costs can be estimated, as we have seen, by means of logistic
regression



4/6

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

I An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or
negative) cost ce ∈ R that is payed iff the incident pixels v and w are
put in distinct components

I Such costs can be estimated, as we have seen, by means of logistic
regression



4/6

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

I Image decomposition problem:

min
y∈YG

∑
e∈E

ce ye

I The optimal solution is shown in the next slide
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I One technique for finding feasible solutions to an image
decomposition problem is local search.

I Starting from the finest decomposition into singleton components
(depicted above), we greedily join neighboring components as long as
this improves the cost (see next slide).
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I Once no joining of neighboring components further reduces the cost,
we consider all pairs of neighboring components

(depicted in green)
and all nodes at the shared boundary (depicted in black) and all
possibilities of moving nodes from one component to the other.

I The procedure is iterated until no such transformation further reduces
the cost
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Clustering for Image Decomposition

Summary.

I We have seen an application of the correlation clustering problem to
the task of image decomposition.

I This application is useful in settings where components of the image
are indistinguishable by appearance, and where no prior knowledge
can or shall be introduced on the number of size of components.


