Machine Learning 1 - Exercise 1

Machine Learning for Computer Vision
TU Dresden

Solutions to any part of any of the exercises below will be accepted as separate entries of the thread entitled Exercise 1: Solution of the lecture forum ${ }^{1}$ until Nov 19th, 18:00. The solutions will not be graded. Instead, at the end of this term, the most highly voted solution of all will be awarded with a book prize.

1 Deciding with disjunctive normal forms (DNFs)

a) Let $V=\{0,1,2,3\}$. State the V-variate DNF defined by $\theta=\{(\emptyset,\{0\}),(\{0\},\{3\}),(\{0,3\},\{1,2\})\}$, its length and its depth.
b) State two distinct DNFs such that the function defined by these DNFs equals the function g defined in Tab. 1 below.
c) How many distinct DNFs in $n=|V|$ variables exist?
d) Prove the following universality lemma: For any finite, non-empty set V and any $f:\{0,1\}^{V} \rightarrow$ $\{0,1\}$, there exists a V-variate DNF defining f.

2 Deciding with binary decision trees (BDTs)

a) Construct two distinct BDTs such that the function defined by these BDTs equals the function g defined in Tab. 1.
b) Let V be a finite, non-empty set. Define an algorithm that takes any disjoint sets $A, B \subseteq$ $\{0,1\}^{V}$ as the input and outputs a V-variate, $\{0,1\}$-valued BDT θ such that the function f_{θ} defined by this BDT has the properties $f_{\theta}(A)=0$ and $f_{\theta}(B)=1$.
c) Prove the correctness of your algorithm.
d) Prove the following universality lemma: For any finite, non-empty set V and any $f:\{0,1\}^{V} \rightarrow$ $\{0,1\}$, there exists a V-variate, $\{0,1\}$-valued BDT defining f.

[^0]Table 1: Defined by the value table below is a Boolean function $g:\{0,1\}^{V} \rightarrow\{0,1\}$ with $V=$ $\{0,1,2\}$.

x_{0}	x_{1}	x_{2}	$g(x)$
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	0

[^0]: ${ }^{1}$ https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/26617479170/CourseNode/ 102502724177602

