Machine Learning 1 – Exercise 1

Machine Learning for Computer Vision TU Dresden

Solutions to any part of any of the exercises below will be accepted as separate entries of the thread entitled **Exercise 1: Solution** of the lecture forum¹ until **Nov 19th**, **18:00**. The solutions will not be graded. Instead, at the end of this term, the most highly voted solution of all will be awarded with a book prize.

1 Deciding with disjunctive normal forms (DNFs)

- a) Let $V = \{0, 1, 2, 3\}$. State the V-variate DNF defined by $\theta = \{(\emptyset, \{0\}), (\{0\}, \{3\}), (\{0, 3\}, \{1, 2\})\}$, its length and its depth.
- b) State two distinct DNFs such that the function defined by these DNFs equals the function g defined in Tab. 1 below.
- c) How many distinct DNFs in n = |V| variables exist?
- d) Prove the following universality lemma: For any finite, non-empty set V and any $f: \{0, 1\}^V \to \{0, 1\}$, there exists a V-variate DNF defining f.

2 Deciding with binary decision trees (BDTs)

- a) Construct two distinct BDTs such that the function defined by these BDTs equals the function g defined in Tab. 1.
- b) Let V be a finite, non-empty set. Define an algorithm that takes any disjoint sets $A, B \subseteq \{0,1\}^V$ as the input and outputs a V-variate, $\{0,1\}$ -valued BDT θ such that the function f_{θ} defined by this BDT has the properties $f_{\theta}(A) = 0$ and $f_{\theta}(B) = 1$.
- c) Prove the correctness of your algorithm.
- d) Prove the following universality lemma: For any finite, non-empty set V and any $f: \{0, 1\}^V \rightarrow \{0, 1\}$, there exists a V-variate, $\{0, 1\}$ -valued BDT defining f.

 $^{{}^{1} \}tt https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/26617479170/CourseNode/102502724177602$

Table 1: Defined by the value table below is a Boolean function $g: \{0,1\}^V \to \{0,1\}$ with $V = \{0,1,2\}$.

x_0	x_1	x_2	g(x)
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	0